Introduction of X-ray (XPS, XES, and XAS) analysis method

Ming H. Cheng, Allie Margarella, **Yu Liu** John C. Hemminger group January 11, 2011

Advanced X-Ray Analysis Methods

XPS (Photoemission) → Binding Energy (beamiline 11.0.2, beamline 9.3.2) XAS (Absorption) → Unoccupied Density of state (HOMO) (beamiline 11.0.1, beamiline 10.3.2) XES (Emission) → Occupied Density of state (LOMO) (beamiline 8.0.1)

All in one?

XPS, XAS, XES all in Beamline 11.0.2?

•XPS & Electron Yield XAS

Purpose

Binding Energy, Density of State of Conduction Band

- > Fermi Surface Determination: Valence Band Spectrum, or know BE element
- Band Gap
- ➤Testing experiment on Si

Electron Yield XES & XAS

- Density of State of Valence and Conduction Band
- Band Gap and Core Hole Effect

XPS

One Photon process: Photon in Electron out

Surface Sensitivity

•Electron Inelastic Mean Free Path

Depth profile experiment and inelastic mean free path (IMFP)

Depth profile experiment

Photoelectrons with different kinetic energies come from different depth of the sample.

•Continuous •Changeable

XES and XAS

Two Photons process: Photon in Photon out

Limitation

•Traditional Measurement (Transmission)

- Signal-to-background ratios limited by thickness (~500Å)
- Radiation damage
- Reflection geometry experiment
- Surface Sensitive?!

•We can only collect electron not photon in beamline 11.0.2

•Electron Yield or Secondary Electron

Auger electron & Fluorescent Photon

Electron Yield

Auger electron yield dominate

For K shell excitation of low-Z atoms
For L shell excitation of all Z <90
C, N O, S, Si

 $E_F - E_V$ Binding Energy (eV) of Kinetic Energy (eV)

Stöhr, Joachim, NEXAFS Spectroscopy, Springer-Verlag 1996

Detection Mode

Auger Electron Yield (AEY)
 Partial Electron Yield (PEY)
 Total Electron Yield (TEY)

Reviews: XPS & Electron Yield XAS Band Gap Determination

Fermi Surface Determination

Testing Experiment on Si (band gap 1.11eV)

Binding Energy calibration

Au 4f_{7/2}=84.00 eV
 Ag 3d_{5/2}=368.27 eV
 Cu 2p_{3/2}=932.67 eV

M. P. Seah, Surf. Interface Anal. 14, 488 (1989)

•Valence Band Spectrum

18

Take-home messages

Band Gap Determination by XPS+XAS

Fermi Surface Determination by Valence Band Spectrum
 Fermi Surface Determination by Binding Energy Calibration
 Testing Experiment on Si

Band Gap Determination by Electron Yield XES+XAS
 Density of State Information of Valence band and Conduction band
 Core Hole Effect Analysis